../_images/smdrqa_logo1.svg

window_size#

Features#

HistogramSampling()#

HistogramSampling(histogram, bins_midpoints, samples)[source]#

Function for doing histogram sampling from a distribution

Parameters:

histogram (array) – histogram counts normalised to get a sum =1

bins_midpointsarray

values corresponding to the probability values given as “histogram”

samplesint

number of histograms samples

returns:
  • hist2 (array) – histogram counts of the resulting distribution

  • bins_midpoints (array) – midpoints of bins corresponding to hist2

References

  • Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438 (5-6), 237–329.

Sliding_windowBS_sub_per_lam()#

Sliding_windowBS_sub_per_lam(RP, maxsize, winsize, n_boot)[source]#

Function for computing the CI of the bootstrapped confidence interval for percentage laminarity

Parameters:
  • RP (ndarray) – recurrence plot

  • maxsize (int) – RP size

  • winsize (int) – size of the sliding window

    n_bootint

    number of bootstrap samples

Returns:

CI (double) – confidence interval(95% quantile - 5% quantile)

References

  • Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438 (5-6), 237–329.

Sliding_windowBS_sub_avg_vert()#

Sliding_windowBS_sub_avg_vert(RP, maxsize, winsize, n_boot)[source]#

Function for computing the CI of the bootstrapped confidence interval for average vertical line length

Parameters:
  • RP (ndarray) – recurrence plot

  • maxsize (int) – RP size

  • winsize (int) – size of the sliding window

    n_bootint

    number of bootstrap samples

Returns:

CI (double) – confidence interval(95% quantile - 5% quantile)

References

  • Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438 (5-6), 237–329.

Sliding_windowBS_sub_percent_det()#

Sliding_windowBS_sub_percent_det(RP, maxsize, winsize, n_boot)[source]#

Function for computing the CI of the bootstrapped confidence interval for percentage determinism

Parameters:
  • RP (ndarray) – recurrence plot

  • maxsize (int) – RP size

  • winsize (int) – size of the sliding window

    n_bootint

    number of bootstrap samples

Returns:

CI (double) – confidence interval(95% quantile - 5% quantile)

References

  • Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438 (5-6), 237–329.

Sliding_windowBS_sub_avg_diag()#

Sliding_windowBS_sub_avg_diag(RP, maxsize, winsize, n_boot)[source]#

Function for computing the CI of the bootstrapped confidence interval for average diagonal line length

Parameters:
  • RP (ndarray) – recurrence plot

  • maxsize (int) – RP size

  • winsize (int) – size of the sliding window

    n_bootint

    number of bootstrap samples

Returns:

CI (double) – confidence interval(95% quantile - 5% quantile)

References

  • Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438 (5-6), 237–329.

Sliding_windowBS()#

Sliding_windowBS(RP, maxsize, var, n_boot=1000)[source]#

Function for computing the CI of the bootstrapped confidence interval for a given variable for different window sizes starting from 20 to a maximum of RP size incremented by value of 10

Parameters:
  • RP (ndarray) – recurrence plot

  • maxsize (int) – RP size

  • var (str) – RQA variable name

    percent_lam : percentage laminarity

    percent_det : percentage determinism

    avg_vert : average value of vertical line distribution

    avg_diag : average value of diagonal line distribution

    n_bootint

    number of bootstrap samples

Returns:

data (dataframe) – dataframe containing the CI estimate of corresponding window sizes, columns are

WINSIZE : window size

95% quantile- 5% quantile : confidence interval

References

  • Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438 (5-6), 237–329.

Sliding_window_whole_data()#

Sliding_window_whole_data(RP_dir, var, n_boot=1000)[source]#

Function for computing the CI of the bootstrapped confidence interval for a given variable for different window sizes starting from 20 to a maximum of RP size incremented by value of 10. Done for all datasets in the folder specified

Parameters:
  • RP_dir (str) – directory containing all the RP files(.npy)

  • var (str) – RQA variable name

    percent_lam : percentage laminarity

    percent_det : percentage determinism

    avg_vert : average value of vertical line distribution

    avg_diag : average value of diagonal line distribution

    n_bootint

    number of bootstrap samples

Returns:

data (dataframe) – dataframe containing the CI estimate of corresponding window sizes, columns are

WINSIZE : window size

95% quantile- 5% quantile : confidence interval

group : filename of the RPs

References

  • Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438 (5-6), 237–329.