window_size#
Features#
HistogramSampling()#
- HistogramSampling(histogram, bins_midpoints, samples)[source]#
Function for doing histogram sampling from a distribution
- Parameters:
histogram (array) – histogram counts normalised to get a sum =1
- bins_midpointsarray
values corresponding to the probability values given as “histogram”
- samplesint
number of histograms samples
- returns:
hist2 (array) – histogram counts of the resulting distribution
bins_midpoints (array) – midpoints of bins corresponding to hist2
References
Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438 (5-6), 237â329.
Sliding_windowBS_sub_per_lam()#
- Sliding_windowBS_sub_per_lam(RP, maxsize, winsize, n_boot)[source]#
Function for computing the CI of the bootstrapped confidence interval for percentage laminarity
- Parameters:
RP (ndarray) – recurrence plot
maxsize (int) – RP size
winsize (int) – size of the sliding window
- n_bootint
number of bootstrap samples
- Returns:
CI (double) – confidence interval(95% quantile - 5% quantile)
References
Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438 (5-6), 237â329.
Sliding_windowBS_sub_avg_vert()#
- Sliding_windowBS_sub_avg_vert(RP, maxsize, winsize, n_boot)[source]#
Function for computing the CI of the bootstrapped confidence interval for average vertical line length
- Parameters:
RP (ndarray) – recurrence plot
maxsize (int) – RP size
winsize (int) – size of the sliding window
- n_bootint
number of bootstrap samples
- Returns:
CI (double) – confidence interval(95% quantile - 5% quantile)
References
Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438 (5-6), 237â329.
Sliding_windowBS_sub_percent_det()#
- Sliding_windowBS_sub_percent_det(RP, maxsize, winsize, n_boot)[source]#
Function for computing the CI of the bootstrapped confidence interval for percentage determinism
- Parameters:
RP (ndarray) – recurrence plot
maxsize (int) – RP size
winsize (int) – size of the sliding window
- n_bootint
number of bootstrap samples
- Returns:
CI (double) – confidence interval(95% quantile - 5% quantile)
References
Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438 (5-6), 237â329.
Sliding_windowBS_sub_avg_diag()#
- Sliding_windowBS_sub_avg_diag(RP, maxsize, winsize, n_boot)[source]#
Function for computing the CI of the bootstrapped confidence interval for average diagonal line length
- Parameters:
RP (ndarray) – recurrence plot
maxsize (int) – RP size
winsize (int) – size of the sliding window
- n_bootint
number of bootstrap samples
- Returns:
CI (double) – confidence interval(95% quantile - 5% quantile)
References
Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438 (5-6), 237â329.
Sliding_windowBS()#
- Sliding_windowBS(RP, maxsize, var, n_boot=1000)[source]#
Function for computing the CI of the bootstrapped confidence interval for a given variable for different window sizes starting from 20 to a maximum of RP size incremented by value of 10
- Parameters:
RP (ndarray) – recurrence plot
maxsize (int) – RP size
var (str) – RQA variable name
percent_lam : percentage laminarity
percent_det : percentage determinism
avg_vert : average value of vertical line distribution
avg_diag : average value of diagonal line distribution
- n_bootint
number of bootstrap samples
- Returns:
data (dataframe) – dataframe containing the CI estimate of corresponding window sizes, columns are
WINSIZE : window size
95% quantile- 5% quantile : confidence interval
References
Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438 (5-6), 237â329.
Sliding_window_whole_data()#
- Sliding_window_whole_data(RP_dir, var, n_boot=1000)[source]#
Function for computing the CI of the bootstrapped confidence interval for a given variable for different window sizes starting from 20 to a maximum of RP size incremented by value of 10. Done for all datasets in the folder specified
- Parameters:
RP_dir (str) – directory containing all the RP files(.npy)
var (str) – RQA variable name
percent_lam : percentage laminarity
percent_det : percentage determinism
avg_vert : average value of vertical line distribution
avg_diag : average value of diagonal line distribution
- n_bootint
number of bootstrap samples
- Returns:
data (dataframe) – dataframe containing the CI estimate of corresponding window sizes, columns are
WINSIZE : window size
95% quantile- 5% quantile : confidence interval
group : filename of the RPs
References
Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics reports, 438 (5-6), 237â329.